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1. Introduction

Number theory is one of the oldest disciplines dating thousands of years back.

Problems in number theory are remarkably easy to phrase and sometimes take

centuries to prove. One of the unsolved problems involves perfect numbers, the

concept of which dates back to the times of Euclid.

The purpose of this project is to give a brief but concise description of the

developments in the study of perfect numbers.

A number n is called perfect iff σ(n) = 2n, where σ(n) =
∑

d|n d is the sum of

the positive divisors of n.
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2. Even perfect numbers

Euclid proved that a number of the form 2p−1(2p − 1), where both p and 2p − 1

are primes, is perfect. Euler proved the converse, i.e. that any even perfect number

has the form specified by Euclid.

It should be noted that primes of the form 2p − 1 are called Mersenne primes

and are usually denoted as Mp. It has been conjectured that there are infinitely

many Mersenne primes (and so there are infinitely many even perfect numbers).

As of the year 2000 only 38 Mersenne primes were known.

We can put the statements of Euler and Euclid into one theorem. Note, part of

the proof of the theorem was taken from [Nar].

Theorem 1. (Euclid, Euler) An even number is perfect iff it has the form 2p−1Mp

where Mp is the Mersenne prime.

Proof. First let us prove Euclid’s claim. Let n = 2p−1Mp where Mp is a Mersenne

prime. Since σ(n) is a multiplicative function we obtain:

σ(n) = σ(2p−1)σ(Mp) = (1 + 2 + · · ·+ 2p−1)(1 + Mp) = (2p − 1)(1 + 2p − 1)

= Mp · 2p = 2n.

So n is indeed perfect.

Now let us prove the converse of Euclid’s statement. Since n is even, we can

write it as n = 2 am, where m is odd. Then 2 a+1m = 2n = σ(n) = (2 a+1−1)σ(m).

Hence, 2 a+1 must divide σ(m) as it does not divide 2 a+1 − 1. So σ(m)
2 a+1 ∈ Z, i.e.

σ(m) = 2 a+1q where q ∈ Z. So we have

m = (2 a+1 − 1)q and σ(m) = 2 a+1q .

One can observe that σ(m) = m + q, so m and q are the only divisors of m and,

therefore, m must be prime. Thus, q = 1 and 1 + m = σ(m) = 2 a+1. So we have

m = 2 a+1−1 is a prime. This implies that a+1 is also a prime, otherwise m would

be composite. Setting a + 1 = p gives the desired result. �
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3. Abundancy ratio

The search for perfect numbers gave rise to a rather interesting quantity called

the abundancy ratio. It is defined as σ(n)
n for a given integer n. Clearly, a number n

is perfect iff its abundancy ratio is 2. Numbers for which this ratio is greater than

2 (less than 2) are called abundant (deficient) numbers.

Let us investigate certain properties of this ratio by stating and proving cer-

tain lemmas. First of all, it is quite clear to see that the abundancy ratio is a

multiplicative function.

Lemma 1. σ(n)
n =

∑
d|n

1
d .

Proof. It is pretty much straight forward, namely: σ(n)
n = 1

n

∑
d|n d = 1

n

∑
d|n

n
d =∑

d|n
1
d . �

Lemma 2. If m|n then σ(m)
m ≤ σ(n)

n , with equality occuring iff m = n.

Essentially this lemma says that any (nontrivial) multiple of a perfect number

is abundant and every divisor of a perfect number is deficient.

Lemma 3. The abundancy ratio takes on arbitrarily large values.

Proof. Let’s examine abundancy ratio of the number n!. Then, by Lemma 1, we

have
σ(n!)

n!
=

∑
d|n!

1
d
≥

n∑
i=1

1
i

,

and so, since the harmonic series diverges to infinity, we obtain the claim of this

lemma. �

Lemma 4. For any prime power pa the following inequality holds

1 <
σ(pa)

pa
<

p

p− 1
.

Proof follows directly from the definition of σ function.

Since the abundancy ratio is a rational number, it would be nice to know the

“distribution” of these ratios in the interval [1,∞). The next few results are related

to it.

Theorem 2. (Laatsch) The set of abundancy ratios σ(n)
n for n ≥ 1 is dense in the

interval [1,∞).
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However, not all of the rationals from the interval [1,∞) are abundancy ratios

of some integer. This is due to the following lemma (See [Wei]).

Lemma 5. If gcd(k, m) = 1 and m < k < σ(m), then k
m is not the abundancy

ratio of any integer.

Proof. Suppose k
m = σ(n)

n for some integer n. Then kn = mσ(n) meaning that

m|kn, and so m|n since m and k are coprime. However, by Lemma 2 we have

σ(m)
m

≤ σ(n)
n

=
k

m

which yields σ(m) ≤ k - a contradiction to the fact that k < σ(m). �

One can use previous lemma to establish another interesting theorem about the

distribution of abundancy ratios.

Theorem 3. The set of rationals that are not abundancy ratios is dense in [1,∞).

The next theorem is a marvelous piece of work and demonstrates a very inter-

esting link to odd perfect numbers. The proof was taken from [Wei].

Theorem 4. If σ(n)
n = 5

3 for some n, then 5n is an odd perfect number.

Proof. For the given n we have 3σ(n) = 5n, so 3|n. If n is even, then 6|n, and

so by Lemma 2 we get σ(n)
n ≥ σ(6)

6 = 2, contradicting σ(n)
n = 5

3 . Thus n is odd,

so 5n is also odd. Therefore, because 3σ(n) = 5n, σ(n) is odd as well. From the

multiplicativity of σ(n) it is easy to show that if n and σ(n) are both odd, then n

must be a square. Therefore 32|n.

Does 5 divide n? If it does, then 32 · 5|n, and by Lemma 2 we get

σ(n)
n

≥ σ(32 · 5)
32 · 5

=
26
15

>
5
3

,

contradicting σ(n)
n = 5

3 . Therefore, gcd(5, n) = 1, so

σ(5n)
5n

=
σ(5)σ(n)

5n
=

6
5
· 5
3

= 2 ,

meaning that 5n is an odd perfect number. �
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4. Odd perfect numbers

The situation is very different when we look at odd perfect numbers. Even their

existence is in doubt. In fact, it is conjectured that odd perfect numbers do not

exist. However, proving this conjecture turned out to be a very tough endeavour.

We can see how rare odd perfect numbers really are by looking at the following

theorem (See [BCR]).

Theorem 5. (Brent, Cohen, te Riele) There is no odd perfect number less than

10300.

Euler was the first to actually decipher part of puzzle about odd perfect numbers,

he derived the following theorem.

Theorem 6. (Euler) Let n be an odd perfect number, then it has the form

n = pa
∏k

i=1 qi
2ei , where p, q1, q2, . . . , qk are distinct primes and p ≡ a ≡ 1 mod 4.

Prime p in Euler’s theorem is usually called the special prime and the factor pa

is called Euler’s factor. From Euler’s theorem we can deduce a rather simple, yet

interesting corollary.

Corollary 1. If n is an odd perfect number, then n ≡ 1 mod 4.

Applying Euler’s theorem one can show the result describing the distribution of

odd perfect numbers (See [Nar]).

Theorem 7. If P (x) is the number of odd perfect numbers not exceeding x, then

P (x) � o(x).

No surprise there, since we already knew that odd perfect numbers are really

rare, at least Theorem 7 quantifies their rarity.

It seems that so far there are two main types of theorems about odd perfect

numbers: (1) theorems stating lower bounds on the size of divisors, and (2) theorems

stating the minimum number of distinct primes. Obviously, these are not the

only types of theorems, although they are very useful since they give us a rough

framework to work in. We shall begin with the first kind of theorems and state the

latest known results.



PERFECT NUMBERS AND ABUNDANCY RATIO 7

The next theorem states the size of the largest prime power factor in n (See

[Coh]).

Theorem 8. (Cohen) An odd perfect number must have a prime power divisor pa

which exceeds 1030.

Hagis and Cohen have shown the following theorem (See [HaC]).

Theorem 9. (Hagis, Cohen) If P is the largest prime divisor of an odd perfect

number, then P > 106.

For the next two theorems see [Ian1] and [Ian2].

Theorem 10. (Iannucci) If S is the second largest prime divisor of an odd perfect

number, then S > 104.

Theorem 11. (Iannucci) If T is the third largest prime divisor of an odd perfect

number, then T > 102.

It should be duly noted that Theorems 8 - 11 have used the abundancy ratio

extensively in their proofs, as well as making use of computer power.

The second kind of theorems are essentially based on a theorem of Dickson (See

[Dic]).

Theorem 12. (Dickson) For every k ≥ 1 there can be at most a finite number of

odd perfect numbers with k prime divisors.

Recent improvement of Pomerance’s upper bound is due to Heath-Brown (See

[Hea]).

Theorem 13. (Heath-Brown) If n is an odd perfect number with k distinct prime

divisors, then

n < 44k

.

Continuing in similar spirit, we shall state the latest results on the minimum

number of prime factors of an odd perfect number (See [Hag1] and [Hag2]).

Theorem 14. (Hagis) If n is an odd perfect number then it must have at least

8 distinct prime factors. Moreover, if 3 - n then the minimum number of factors

must be at least 11.
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Note that the first part of the previous theorem was independently proved by J.

E. Z. Chein in his doctoral dissertation.

Certain other theorems deal with nonexistence of specific types of perfect num-

bers, however they are too numerous to list them all here. Instead we shall just

give a taste of what they are all about by listing the simplest of cases.

Theorem 15. (Pepin) An odd perfect number cannot be congruent to 5 mod 6.

In contrast to Pepin’s result, Touchard has shown that odd perfect numbers must

satisfy certain congruences.

Theorem 16. (Touchard) If n is an odd perfect number, then either n ≡ 1 mod 12

or n ≡ 9 mod 36.

The next theorem has its value due to the restriction it places on the smallest

prime divisor (See [Gru]).

Theorem 17. (Grün) Let’s say that an odd perfect number n has the form

n =
∏k

i=1 pi
ai where the primes pi satisfy p1 < p2 < · · · < pk. Then p1 < 2

3k + 2.

5. Conclusions

This area of research holds much promise. It seems that every so often we find

more Mersenne primes, increase the search algorithms for odd perfect numbers,

prove more theorems on the number of distinct primes of an odd perfect number etc.

All of these tasks are computationally intensive, hopefully new computer technology

will dramatically increase the results we obtain from these algorithms. Even though

a lot of results about odd perfect numbers are known, it seems a far cry from a

proof of (non)existence.

My personal feeling is that odd perfect numbers do not exist and that there are

infinitely many Mersenne primes. Hopefully proving these conjectures will not take

another millenia.

Due to the fact that Carleton Library did not have all the resources necessary for

this project , the scope of the research has been somewhat limited. Nevertheless,

I went through at least 40 papers (out of 100+ ), some of which did not have any

new or relevant material and some of which were even absolutely wrong. Only the

most recent results appear in this project.
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